1. ($\mathbf{1 5}$ points) You first throw a fair die, then throw as many fair coins as the number that showed on the die. Given that exactly 5 heads are obtained, what is the probability that the die showed 5 ?
2. ($\mathbf{1 5}$ points) Hawa and Associates have two factory lines (I and II) have the same probability of defectives in their production of fan regulators. Each regulator being defective is independent of other regulators. Five regulators are sampled from each line and tested. Among the total of 10 tested regulators, 4 are defective. Find the probability that exactly 3 of the defectives came from line I.
3. The number of raisins in a small halwa from Aggarwal and Daughters Sweet shop has a Poisson distribution with $\lambda=3$. The number of raisins in different halwas are independent of each other. Suppose we take two of these halwas
(a) ($\mathbf{5}$ points) What is the probability that each will contain at least one raisin?
(b) ($\mathbf{5}$ points) What is the probability that the two halwas will have a total of at least two raisins?
4. A random variable has the density function

$$
f_{Y}(y)= \begin{cases}\frac{1}{y^{2}} & \text { if } \frac{1}{2}<y<1 \\ 0 & \text { otherwise. }\end{cases}
$$

(a) (5 points) Verify that this can be the density of a random variable.
(b) ($\mathbf{5}$ points) Find the cumulative distribution function $F_{Y}(y)$.
(c) (5 points) Find the median of Y, i.e. a number c such that $P(Y \leq c)=P(Y \geq c)=\frac{1}{2}$.
(d) (5 points) Find the expected value $E(Y)$ and the variance $\operatorname{Var}(Y)$.
5. ($\mathbf{1 5}$ points) Two random variables X and Y have the following joint probability mass function:

	$X=-1$	$X=0$	$X=2$
$Y=0$	0.0	0.1	0.1
$Y=1$	0.1	0.2	0.0
$Y=2$	0.1	0.1	0.3

Find $\operatorname{Cov}(X Y)$.
6. ($\mathbf{1 0}$ points) Let X and Y be independent random variables with variances σ_{X}^{2} and σ_{Y}^{2} respectively. For what value of λ does the random variable $Z=\lambda X+(1-\lambda) Y$ have the smallest variance?
7. (15 points) Two types of coin are produced at a factory: a fair coin and a biased one that comes up heads 55% of the time. We have one of these coins but do not know whether it is a fair or biased coin. In order to ascertain which type of coin we have, we shall perform the following statistical test. We shall toss the coin 1000 times. If the coin comes up heads 525 or more times we shall conclude that it is a biased coin. Otherwise, we shall conclude that it is fair. If the coin is actually fair, what is the probability that we shall reach a false conclusion? What would it be if the coin were biased?

$$
\int_{0}^{z} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.117	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0	0.1915	0.1950	0.1985	0.2	0.	0.2088	0.2123	0.21	0.2190	4
0.6	0.2258	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2518	0.2549
0.7	0.2580	0.2612	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2882	0.2910	0.2939	0.2967	0.2996	0.3023	0.3051	0.3079	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3290	0.3315	0.3340	0.3365	0.3389
1.0	0.3414	0.3438	0.	0.3	0.3508	0.	0.3554	0.	0.3599	22
1.1	0.364	0.3665	0.3687	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.403	0.4049	0.4066	0.4083	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4193	0.420	0.4222	0.4237	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1	0.4	0.434	0.4358	0.4370	0.4382	0.439	0.4406	0.4418	0.443	0.4441
1.6	0.4452	0.4463	0.4474	0.4485	0.4495	0.4505	0.4516	0.4526	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4600	0.4608	0.4617	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4679	0.4686	0.4693	0.4700	0.4706
1.9	0.471	0.4720	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4762	0.4767
2.0	0.4773	0.4778	0.4783	0.4788	0.4793	0.479	0.4803	0.480	0.4	0.4817
2.1	0.4822	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.485	0.4858
2.2	0.4861	0.4865	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.491	0.4916
2.4	0.4918	0.4920	0.4923	0.4925	0.4927	0.4929	0.4931	0.4933	0.4934	0.4936
2.5	0.4938	0.4940	0.4942	0.4943	0.4945	0.4946	0.4948	0.494	0.495	0.4952
2.6	0.4954	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4966	0.4967	0.4968	0.4969	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4975	0.4975	0.4976	0.4977	0.4978	0.4978	0.4979	0.4980	0.4980	0.4981
2.9	0.4982	0.4982	0.4983	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4988	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4991	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4993	0.4993	0.4993
3.2	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995	0.4995
3.3	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998	0.4998	0.4998

